A true industrial thermoplastic, polycarbonate (PC) is widely used throughout industry. When combined with the Fused Deposition Modeling (FDM) systems by Stratasys, polycarbonate is ideal for the rapid production of prototypes, tooling, and direct (tool-less) manufacturing of production parts.

Mechanical Properties ¹	Test Method	Imperial	Metric
Tensile Strength, Type 1, 0.125 Tensile Modulus, Type 1, 0.125 Tensile Elongation, Type 1, 0.125 Flexural Strength Flexural Modulus IZOD Impact, notched IZOD impact, un-notched	ASTM D638 ASTM D638 ASTM D638 ASTM D790 ASTM D790 ASTM D256 ASTM D256	7,600 psi 290,000 psi 3% 14,000 psi 310,000 psi 1 ft-lb/in 5 ft-lb/in	52 MPa 2,000 MPa 3% 97 MPa 2,137 MPa 53.39 J/a 266.95 J/a
Thermal properties	Test Method	Imperial	Metric
Heat Deflection Temperature (HDT) Glass Transition (Tg) Coefficient of Thermal Expansion Melt Point	ASTM D648 DMA (SSYS)	260° F 322° F 3.8E-05 in/in/F Not Applicable ²	127° C 161° C Not Applicable ²
Other	Test Method	Value	
Specific Gravity Vertical Burning Test Rockwell Hardness Dielectric S (kV/mm) Dielectric C (60Hz)	ASTM D792 UL94 ASTMD785 IEC 60112 IEC 60250	1.2 V2, 1.1 mm R118 15 3.17	

APPEARANCE
• White

SYSTEM AVAILABILITY

- FDM Titan **TI**
- FDM Vantage SE
- FDM Vantage **S**
- FDM Vantage i (when configured with PC)

The information presented includes typical values intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. End-use material performance will be impacted by, but not limited to, part design, end-use conditions, test conditions, etc. Actual values will vary with build conditions.

For more information about Stratasys systems and materials, contact your representative +1 888.480.3548 or visit www.stratasys.com

¹ Build orientation is down, on side edge. ² Due to amorphous nature, material does not exhibit a melting point.